

8th EURADOS Webinar (28/10/2021) Intercomparisons of personal dosimeters: Lessons learnt

Individual Results

Ana M. Romero – CIEMAT, Radiation Dosimetry

OUTLINE

- Irradiation plan: lessons learnt by participants
- Whole body dosemeters
- Extremity dosemeters
- Eye-lens dosemeters

Irradiation plan was designed to allow IMSs to check:

LINEARITY

- Low, Medium and High doses for the same radiation quality

ANGULAR RESPONSE

- Normal and angular incidence irradiations to a similar dose value for the same radiation quality

Irradiation plan was designed to allow IMSs to check:

ENERGY RESPONSE

- Radiation qualities in a wide range of energies

RESPONSE TO MIXED FIELDS

- Same dosemeter irradiated to mixed radiation qualities

Irradiation plan was designed to allow IMSs to check:

RESPONSE TO BETA RADIATION

- Always for extremity dosemeters. Sometimes for whole body dosemeters.

... and to test compliance with ISO-14146: "trumpet curves"

WHOLE BODY DOSEMETERS

- Film
- TLD
- OSL
- Other (RPL, DIS, APD)

Wide range of $H_p(10)$ performance:

FILM dosemeters

trumpet curve parameter: 1.5 / 0.085 mSv

ISO14146:2000 trumpet curve parameter: 1.5 / 0.085 mSv

Results: IC2018

Wide range of $H_p(10)$ performance:

TLD dosemeters

Better $H_p(10)$ performance:

OSL

Other types

ISO14146:2000 trumpet curve parameter: 1.5 / 0.085 mSv

Results: IC2018

 $H_{p}(10)$

FILM

Sub-linear response

trumpet parameter: 1.5 / 0.085 mSv

Supra-linear response

- Reader?
- Saturation?
- Detector material?

Angular response:

TLD

Remarkable angular dependance for N-40:60° that is not shown for N-150:45° - very common behaviour in IC2016 -

3.0 2.0 2.36 2.5 1.5 2.07 mean value of R 2.0 response 1.0 1.5 1.20 1.00 1.0 0.93 0.5 0.5 0.0 0.0 N-150145° 5.Csl5r.9010° 14-15010° 10 100 1000 dose H_p(10) (mSv) radiation quality Results: IC2016 4 points outside diagramme (> 2) trumpet curve parameter: 1.5 / 0.085 mSv

Anomalous response for N-40 angular response – range of application? -

TLD - good for x-ray but poor for Cs, Co and mixed

TLD - only good for Cs y Co

- Detector material?
- Algorithm/badge design?
- Range of application?

Photon Energy response:

 $H_{p}(10)$

TLD - good for x-ray but poor for Cs, Co and mixed

TLD - only good for Cs y Co

TLD - many outliers but good energy response.

- Detector material?
- Algorithm/badge design?
- Range of application?

- Calibration problems

Mixed N150+S-Cs radiation:

TLD

Good N150 and S-Cs responses but remarkable under-response for mixed radiation (only 1 outlier)

TLD

Under-response to N150 and S-Cs but much more pronounced for mixed radiation

- Algorithm?

Mixed beta+gamma field response:

FILM

 $H_{p}(10)$

Remarkable under response for mixed beta+gamma field

 $H_{p}(0.07)$

Same behaviour

- Algorithm?
- Filtration?

Mixed beta+gamma field response:

 $H_{p}(10)$

Remarkable over response for mixed beta+gamma field

 $H_{p}(0.07)$

Not reproducible behaviour

- Algorithm?
- Badge design

Calibration procedure can improve results:

TLD

Good results that can be improved by calibration factor

improving calibration procedure

Outliers would be reduced by

ISO14146:2000 trumpet curve parameter: 1.5 / 0.085 mSv

Results: IC2018

Conclusions (Whole body dosemeters):

- Wide variation of performance for all type of dosemeters, regardless the type of detector. Good procedures can produce good results with all type of dosimetry systems.
- OSL and Other systems present very few outliers.
- High dose response should be checked for many systems.
- Improvement is possible by checking calibration procedures, dose algorithms and badge design.
- $H_p(0.07)$ response follows trend of $H_p(10)$, but usually with a lower performance.

EXTREMITY DOSEMETERS

- Ring, wrist and finger tip
- Ph, β and Ph+β dosemeters

Wide range of $H_p(0.07)$ performance:

Ph only

Good Ph performance

Poor Ph performance

ISO 14146:2018 trumpet curve, lower dose limit (Ho): 1.0 mSv

Wide range of $H_p(0.07)$ performance:

Ph only

Good Ph performance Acceptable Sr-90 performance

outliers: 3 of 16 fraction of outliers: 19% 2.0 2.0 1.57 1.5 α 1.32 1.28 value of œ response 1.0 0.5 0.5 Wash Mach Mach Milo 10 100 1000 dose $H_n(0.07)$ (mSv) Results: IC2019_{ext eye}

Ph only

Poor Ph performance Acceptable Sr-90 performance

ISO 14146:2018 trumpet curve, lower dose limit (Ho): 1.0 mSv

Wide range of $H_p(0.07)$ performance:

 $Ph + \beta$

Good Ph + β performance

 $Ph + \beta$

Poor Ph + β performance

Results: IC2019_{ext eve}

2 values out of diagramme range (>2)!

ISO 14146:2018 trumpet curve, lower dose limit (H₀): 1.0 mSv

Linearity / High doses:

 $H_{p}(0.07)$

RING

WRIST

Sub-linear response

1.0

100

1000

outliers: 5 of 22

RING

Results: IC2009

WRIST

Supra-linear response

- Reader?
- Saturation?
- Detector material?

Results: IC2009

10

dose Hp(0.07) (mSv)

Examples of good performance for ring, wrist and finger tip dosemeters. Better angular response for photon than for beta but...

Finger tip

- ...also examples where the beta angular response is remarkably worse than photon angular response
- Higher influence of filtration for beta radiation

General trend in all extremity ICs:

Ph + β dosemeters show good response to Sr-90 but greatly underestimate low energy beta radiation (Kr-85).

Badge design and detector thickness are critical

Mixed Sr-90+S-Cs radiation:

Ph+β

Coherent behaviour among S-90, S-Cs, and mixed Sr-90+S-Cs

Ph+β

Anomalous response to mixed gamma+beta field, but... ... only for 1 system

 $Ph + \beta$

Under-response

 $Ph + \beta$

Over-response

ISO 14146:2018 trumpet curve, lower dose limit (H₀): 1.0 mSv

Conclusions (Extremity dosemeters):

- Wide variation of performance for all type of extremity dosemeters. Good procedures can produce good results with all type of dosimetry systems.
- Improvement is possible by checking calibration procedures and badge design. Filtration is really important.
- Ph+β dosemeters show better performance for photon than for beta radiation.

EYE LENS DOSEMETERS

- Ph and Ph+β dosemeters

Wide range of $H_p(3)$ performance:

Ph only

Good Ph performance (and β response)

Poor Ph performance (and good β response!)

Results: IC2019_{extere}

3 values out of diagramme range (>2)!

ISO 14146:2018 trumpet curve, lower dose limit (Ho): 0.3 mSv

Wide range of $H_p(3)$ performance:

 $Ph + \beta$

Good performance

Poor performance

Results: IC2019_{ext eye}

2 values out of diagramme range (>2)!

ISO 14146:2018 trumpet curve, lower dose limit (H₀): 0.3 mSv

Linearity / High doses:

 $H_{p}(3)$

Underresponse

Excellent linearity

Angular response:

 $H_{p}(3)$

No problems found, very good angular response in all eye lens dosemeters

Calibration problems:

Good linearity, angular and energy responses, even good for beta!

Ph only

Beta energy response:

 $H_{p}(3)$

 $Ph + \beta$

Similar to extremity dosemeters trend

 $Ph + \beta$

Opposite to extremity dosemeters trend

Conclusions (Eye lens dosemeters):

- Wide variation of performance for all type of eye lens dosemeters. Good procedures can produce good results with all type of dosimetry systems.
- All dosemeters show a good angular response.
- Improvement is possible by checking calibration procedures and badge design.
- Ph+β dosmeters show better performance for photon than for beta radiation.

Conclusions: $H_p(3)$

• Wide variation of performance for all type of eye lens dosemeters. Good procedures can produce good results with all type of dosimetry systems.

- All dosemeters show a good angular response.
- Improvement is possible by checking calibration procedures and badge design.
- Ph+β dosmeters show better performance for photon than for beta radiation.

THANK YOU FOR YOUR ATTENTION!

