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Overview
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 Convergence of a Monte Carlo (MC) simulation

 Figure of merit (efficiency) of a MC simulation

 Focus on essential physics and simulation parameters FIRST

 Efficiency enhancement:

 Software/algorithm side: variance reduction/biasing techniques

 Hardware side: distributed/parallel MC runs

 Exploratory outlook

 Applications of GPUs in MC simulations of radiation transport

 Machine learning applications
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Convergence and efficiency of a 

Monte Carlo simulation



Statistical uncertainty in a MC simulation
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150-MeV p beam 

impinging on water

Scoring energy

deposition density

Averaged over 

transverse plane

Displayed as a 

function of depth
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N=N0=500 primaries

CPU time: T0~1 s

We focus on the 

indicated error bar

Statistical uncertainty in a MC simulation
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N=4N0=2000 primaries

T ~ 4 s = 4T0

Error bar has halved

Statistical uncertainty in a MC simulation
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 N=16N0 = 8000 primaries

 T ~ 16 s = 16T0

 Error bar has halved
again

 The relative uncertainty of 
a MC estimator σf/f scales 
like

σf/f  ~  1/sqrt(N)

 The CPU time scales like

T  ~  N

Statistical uncertainty in a MC simulation



Figure of merit of a MC simulation algorithm
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 Figure of merit (efficiency)

 Scaling with N:
 σf/f ~ 1/sqrt(N) and T ~ N

 For a given MC simulation problem, ϵ is independent of N (when ~converged!)

 ϵ is a relative measure of how well computational time is spent towards 
convergence

 For simulation problems with pathologically slow convergence / low 
efficiency, one wishes to have techniques to lower T and/or σ, overall 
increasing ϵ

CPU time

Relative statistical uncertainty (squared)
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Before “fancy/sophisticated” attempts to 

enhance the efficiency of MC simulations, one 

better have a reasonable grasp of

- Underlying physics

- Monte Carlo simulation parameters



Example: Setting particle transport thresholds
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 Energy deposition by 150-MeV protons in water

 Dominated by proton ionization losses (collisions with target e-)

 Mean free path for nuclear inelastic scattering of 150-MeV p in water: 106.8 cm 

(a few protons undergo a nuclear reaction -> n production -> contribute mostly to tails of the distribution, 

modulate a bit the intensity of the Bragg peak)

 Simulation bottleneck: e- production/transport threshold

i.e. condensed (dE/dx) vs detailed delta-ray simulation

p WATER



Threshold settings
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 Exponential increase of CPU time as one lowers e- thresholds

 An e- threshold of 100 keV is OK if one cares just about a coarse depth-dose curve:

 CSDA range of 100 keV e- in water: ~0.014 cm

 Histogram spatial resolution: ~0.16 cm  -> we could have used even higher e- thresholds!

 Factor 1000 speed-up just for being minimally aware of what governs the problem

e- transport threshold (keV) CPU time (s)

100 3

50 8

10 72

5 176

1 3000



Particle transport/production thresholds
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 MC codes typically provide default threshold values, but they are not 

guaranteed to be meaningful for your problem

 Following e-/e+ to energies lower than one really needs is a ruthless time-

intensive CPU eater

 It pays off to set transport threshold such that residual range is small 

compared to geometry / scoring mesh dimensions (and such that you 

don’t cut out any relevant physics process…)
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Enhancing the MC simulation efficiency 

in problems with strong attenuation

-

Region importance biasing



Shielding example
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500-MeV p beam 

20 cm W target in air

Concrete shielding, 3 layers 

of 25 cm width

Estimate H*(10) ambient 

dose equivalent outside 

shielding

500 MeV p

AIR

CONCRETE

W



The basic physics
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Proton undergoing nuclear inelastic interactions, mostly in W

Secondaries produced per incident proton (tallied with                  ):

 10.8 n -> undergo inelastic interactions mostly in target and concrete

 7.4 photons

 1.6 p

 <0.5: d, t, 3He, 4He

 n and photons might manage to make it through the shielding and 
contribute to the H*(10) ambient dose outside

By and large stopped in concrete



Neutron and gamma fluence
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 Particle fluence past shielding is dominated by neutrons and photons

 Neutron and photon fluence is gradually attenuated by the shielding

 But we still want a statistically significant estimate of the dose outside of the shielding



H*(10) ambient dose equivalent
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NOTE: only meaningful in air/outside shielding… 

 Nprim= 4000

 TCPU= 43 seconds

ϵ~(0.82 x 43)-1 ~ 0.03 s-1



H*(10) ambient dose equivalent, 4x more primaries
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 Nprim= 16000

 TCPU= 171 seconds

ϵ~(0.42 x 171)-1 ~ 0.03 s-1



Biasing
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Figure of merit of a Monte Carlo simulation:

Convergence of desired physical observable might be slow, e.g.:

 Problems with strong attenuation of relevant particle fluence

 Processes with low cross section (e.g. photonuclear interactions)

Biasing techniques aim at enhancing the simulation efficiency:

 Reduce the variance and/or CPU time

 Leading to an overall larger ϵ

Simulation time

Relative statistical uncertainty (squared)



Region importance biasing
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Assign numerical importance to regions in your geometry

Splitting

 Crossing into region with larger
importance

 Particle split into I2/I1 particles

 Reduced statistical weight

Russian roulette

 Crossing into region with lower
importance

 Particle reduced to I2/I1 particles

 Enhanced statistical weight 



Region importance biasing for our shielding problem
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1

1
5

25

1
0.2

0.04

Regions we do not care so much about Regions we care a lot about

1250.008

(ideally one wishes to avoid importance 

discrepancies in contiguous regions…)



H*(10) ambient dose equivalent, original Nprim, biased
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 Nprim= 4000

 TCPU= 42 seconds

ϵ~(0.22 x 42)-1 ~ 0.6 s-1

(efficiency increased by a factor ~20!)

 Particle population is maintained (suppressed) in regions of high (low) importance

 Efficiency enhancement in the right-hand regions comes at the detriment of left-hand regions

 20% uncertainty is still a bit far from convergence -> from now on it’s a matter of running for more primaries



A word of caution
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Biasing techniques effectively concentrate simulation effort in 

desired regions of the geometry / phase space

 It’s the user’s responsibility to ensure no contributions 

from relevant regions are left out by a too careless 

biasing scheme

Particle shower correlations are lost*: no event-by-event 

analyses



Standard biasing techniques
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Region importance biasing

Mean free path biasing

Weight windows

Ant colony algorithm

…

 Ref: S. Garcia-Pareja et al., Front. Phys. 9 718873 https://doi.org/10.3389/fphy.2021.718873

https://doi.org/10.3389/fphy.2021.718873
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Hardware acceleration



MC as a naturally distributed calculation

26

Job 1 Job 2 … Job N

INPUT FILE

Random seed 1 Random seed 2 Random seed N…

Merge counts/histograms



Simulation time

Relative statistical uncertainty (squared)

Efficiency enhancement from distributed runs
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MC simulation efficiency:

For a fixed number of primaries N distributed in n jobs running 
at the same time, the cumulative CPU time T is the same, but 
if one takes T as a walltime, the simulation efficiency is 
enhanced by a factor of nearly* n

Negligible coding overhead, no synchronization issues



[Possible bottleneck for large memory requirements]
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 n distributed runs   n x memory

 Each instance replicates its own memory for geometry, cross section, 
scoring, etc.

 Extreme limit (complicated geometry + e.g. plenty of low-energy neutron 
cross sections to load + very dense scoring meshes), insufficient memory 
e.g. if running 16 threads on one CPU

 Codes like e.g. Geant4 allow for 
shared memory (cross sections 
and geometry) among threads

 A bit of coding overhead / thread 
synchronization

 Ref: https://indico.cern.ch/event/776050/contributions/3240673/attachments/1788898/2913542/Multithreading1.pdf



Best of both worlds: exploit both biasing and distributed/parallel runs!
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Twice as many jobs now, leading to:

 Nprim= 8000

 Twall= 42 seconds

ϵ~(0.142 x 42)-1 ~ 1.2 s-1

(efficiency increased by a 

factor ~40 wrt to the initial efficiency)

• For a vast majority of practical situations, 

a combination of biasing + distributed runs suffices
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Exploratory outlook (hardware): 

GPUs



GPUs
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nVidia Titan RTX GPU

• GPU: graphics processing unit

• Parallel processing of thousands of computational threads

• Naturally advantageous scenarios:

• Tasks requiring millions of identical operations (problem reducing to linear algebra)

• Direct, uniform, contiguous memory access

• Challenging scenarios:

• Tasks with thread divergence and random 

memory access 

(…as in a MC simulation of radiation transport!)

• Requires heavy recoding of MC simulation 

(CUDA programming model)



MPEXS
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 KEK-based tool for radiotherapy:

 Limited set of physics: e-,e+,gamma

 Simple geometry (infinite medium)

 Water-equivalent material

 Process thousands of independent
particle histories in parallel

 Thread divergence: ~50% (!!)

 Nevertheless, speed-up factor of ~400
attainable against single-core CPU.

 Ref: 
https://indico.cern.ch/event/921244/contributions/3870624/attachments/2045775/3427426/HSF-200527-MPEXS.pdf

https://indico.cern.ch/event/921244/contributions/3870624/attachments/2045775/3427426/HSF-200527-MPEXS.pdf


High-energy-physics community
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 Electromagnetic interactions + geometry are among the most CPU time 
consuming aspects for HEP detector simulations

 Ongoing R&D attempting to cast HEP particle transport problem to benefit from 
massive parallelization on GPU architectures

 AdePT:

 Workload balancing, reduce impact of shower tails, maximize number of tracks in flight, etc

 Speed-up observed in simple geometries, pending real geometry (ATLAS/CMS calorimeters)

 Celeritas:

 Targetting EM+hadronic pysics, re-implementation of subset of G4 physics for GPU, focusing on 
EM showers

 Refs (talks and git repos):
https://indico.cern.ch/event/1156147/contributions/4854699/attachments/2444243/4188160/HSFGPU_report.pdf
https://github.com/apt-sim/AdePT
https://github.com/celeritas-project/celeritas

https://indico.cern.ch/event/1156147/contributions/4854699/attachments/2444243/4188160/HSFGPU_report.pdf
https://github.com/apt-sim/AdePT
https://github.com/celeritas-project/celeritas
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Exploratory outlook (algorithms): 

Machine learning attempts

Material kindly provided by Florian Mentzel

Do not miss Habib Zaidi’s interesting talk at 16h!



MC+ML attempts for medical physics applications
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 Main ongoing lines of applications of ML to MC simulations:

 Convolutional neural networks for dose estimation in radiotherapy and imaging

 Dose denoising from low statistics Monte Carlo simulations, 

 Detector modelling 

 Event selection 

 Replacing particle sources / phase space modelling with generative models

https://www.frontiersin.org/articles/10.3389/fphy.2021.738112/full

https://www.frontiersin.org/articles/10.3389/fphy.2021.738112/full


Overview of ML applications in MC simulations (~medical)
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 Dose estimation with neural networks:

 Mentzel et al., Fast and accurate dose predictions for novel radiotherapy treatments in heterogeneous phantoms using 

conditional 3D-UNet generative adversarial networks. Medical Physics 2022;1–16. https://doi.org/10.1002/mp.15555

 Oscar Pastor-Serrano et al., Millisecond speed deep learning based proton dose calculation with Monte Carlo accuracy.

Physics in Medicine and Biology, in press. https://doi.org/10.1088/1361-6560/ac692e

 Low-statistics Monte Carlo enhancement

 X. Xudong et al., Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose 

Calculation of Nasopharyngeal Carcinoma Radiotherapy, Technology in Cancer Research and Treatment 2021; 20: 

15330338211062415 https://doi.org/10.1177/15330338211062415

 Z. Peng et al., MCDNet – A Denoising Convolutional Neural Network to Accelerate Monte Carlo Radiation Transport 

Simulations: A Proof of Principle With Patient Dose From X-Ray CT Imaging. IEEE Access (7) 76680 – 76689, 2019. 

https://doi.org/10.1109/ACCESS.2019.2921013

 Replacing particle sources with generative models

 D. Sarrut et al., Generative adversarial networks (GAN) for compact beam source modelling in Monte Carlo simulations. 

Physics in Medicine and Biology 64 215004, 2019. https://doi.org/10.1088/1361-6560/ab3fc1

 D. Sarrut et al., Modeling complex particles phase space with GAN for Monte Carlo SPECT simulations: a proof of 

concept. Physics in Medicine and Biology 66 055014, 2021. https://doi.org/ https://doi.org/10.1088/1361-6560/abde9a

https://doi.org/10.1002/mp.15555
https://doi.org/10.1088/1361-6560/ac692e
https://doi.org/10.1177/15330338211062415
https://doi.org/10.1109/ACCESS.2019.2921013
https://doi.org/10.1088/1361-6560/ab3fc1
https://doi.org/10.1088/1361-6560/abde9a


A sobering comment
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D. Sarrut et al., Front. Phys. 9 738112 (2021)

“For the moment, even if it is envisioned that deep 

learning can improve simulations, it does not seem 

certain that it can always replace Monte Carlo.”
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Summary



Summary
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 Basic understanding of underlying physics and code simulation parameters can already 
lead to orders of magnitude enhancement of simulation efficiency wrt a careless run

 Biasing techniques as natural methods to enhance simulation efficiency e.g. in desired regions 
of interest in geometry:

 Further orders-of-magnitude enhancement, but user responsible for not cutting out relevant corners of phase space

 MC naturally distributed computational problem

 Truly parallel codes can reduce memory requirements

 Exploratory outlook onto applications of GPUs and ML to MC 

 Even beyond: field programmable gate arrays (FPGAs), MC on a chip (MCoaC)

 Speedups of factor ~90 for TOPAS  https://doi.org/10.1016%2Fj.ejmp.2019.06.016

 Less power (~30 W) than CPUs (~100 W) or GPUs (~300 W)

 Promising applications and speed-ups for condensed matter spin system simulations (Ising model): 
https://arxiv.org/pdf/1602.03016.pdf

 MC code developers share the blame: 

 Efficiency of interaction/transport/sampling algorithms is on us! Physics performances 1st, optimization 2nd.

https://doi.org/10.1016%2Fj.ejmp.2019.06.016
https://arxiv.org/pdf/1602.03016.pdf


Thank you very much 

for your attention!


